SOFTWARES FOR MICREX-F SERIES

FOREWORD

Language ahd instruction set of programmable con-
troller (hereinafter abbreviated as PC) are the first contact
point with users and the most important for determining
performance of PC’s.

In particular, recent situations are:

(1) Diffusion of simplified and programless languages in
personal computers, and

(2) Possibility of use of advanced functions, as a result of
lowering of cost in semi-conductor products.

Also in the field of PC’s the language is gradually
changing into one that is optimum for describing the control
system from one that is stiff due to restriction from hard-
ware.

Fuji Electric has taken the lead by preparing, EPOL
(MICREX-E Problem Oriented Language) that can be
directly programmed from the control block diagram. In
the MICREX-F series (hereinafter abbreviated as F series)
the knowhows that we have acquired through our experience
in both series of MICREX-E and FUJILOG-u are built in
and we have developed FPL (F-series Programming Lan-
guage) which is more friendly with application side.

(2] FEATURES

As a common language to all of F series, from in-
strument-image general-purpose sequencer to high-function
controller in DDC and plant monitor and control level, FPL
has the following features.

2.1 Hierarchy of functions

Fig. 1 shows the hierarchy of functions of FPL. Each
processor has a set of instruction necessary in its function
level, and the specifications of the instructions common to
all equipment within the series. Also, as the group of loaders
can support them in function-level of the loaders, the
loaders can be utilized for all processors without depending
utilized for all purpose without the necessity of depending
on the type of processors.

uUDC 621 316.7

Keiichi Tomisawa
Shin Hashimoto
Yo Kikuchij
Toshiyuki Koido
Choji Kikuchi

Fig. 1 Hierarchy of F series command functions

+F XX series
[F200 series)

[F100 series
r]
e ———————

« Board type

- Slook bpe Lomparson Fui;cz‘/o!;
Sequence Aﬁgﬁggg&/ _operation
control opetation Flile frocelssmg

Iput/ output Adjustment Z?/?g;é; Lot
communication operation Wit op’grat/on
——
Processor Function module
e commumication ™ definition Program contro|
_ : y)
-)

To be de veloped

2.2 Symbolic programming

Rudder diagrams and block diagrams which are general-
ly used for describing controls are used for instruction lan-
guage, and these instructions are carried out directly by LSI.
In particular, since diagram positions and connecting in-
formations are programmed, the original diagram can easily
be reproduced from the program itself and this will become
a program document by itself. This also means that it be
comes easy to realize and build these support function in
other equipment besides the program loader, and this
widens the field of applications.

2.3 Moduled block

A moduled structure that can control in divided form
the program and function modules (sub-routine) by each
function blocks and processing units, is adopted for making
the use of F-series much easier in comparison with the
existing MICREX-E series, in particular in those concerned
with starting timing and delivery and reception of para-
meters.

Also, as all data are moduled and filing instructions are
intensified, data handling is made easier.

25

Table 1 List of instruction set

géga Designation Symbol |Sides | senes ;?553 Designation Symbol | 100 F200 %:;\Ea Designation Symbol | FL100}1200
a contact —ij}— |O | O > —L S ;0 (O Upper limit ——+1|° | ©
b contact —#— |o |0 = {>=1}|o |o Lower limit —{A"+|o | o
Coil 4 lolo o _ — = +|o o l?rlr)nli)tesr and lower (——1 o
o
Set —(sy— |0 | O .§. < +—{ <=+]|0 | O Dead zone | L+ &
g
< o |0 i —1 O
Reset —R>— [0 |0 |8 < — < + ED Bias B Emb
8 |Rise differential | —(1)>— |0 |0 + — £ o |o ;é’ Filter —{ FIL o
[
ag; Falt differential — i)~ |o |0 File comparison | T{ REF 1= o Differential - oiF 0
2
Inversion —4— |0 |0o AND —{an+|0O |O Integration L T 0
— SR OR —L{orR o |O Sample hold —{HoLD}— e}
| |
EOR}F| 0O | O Multipercent MLTP}— o)
Shift register “’I I’ oo | o [FOR Tt ultipercen T
O .
— | £ |Inversion —L N0 o Divided percent | —{DpivP - o
I I)
— 4 &' shift right logical | TL SRL | o | o fg]?ogtm —FFsT| 0 | o
=
Step sequence | °7 " P10 | O | G [Shift left logical | TLSLEF| 0 {0 FIFO load H{rFo}-|o |0
=
ON delay timer |—LTON 1|0 | O Set bit TI{sBIT o FILO load +{FiLo}|oO | O
OFF delay timer | {ToFr 1H|O | O Reset bit T—L{RBIT o} File definition +—{FLE}F|O [O
by —I's Test bit TLTBIT = O | » |File clear +—IFLcLH| 0 | O
£ |Integrating timer | jtmMr ||| 0 | O =
= —R 1 Binary/BCD —BCD}|O |O Selector —{seL (o |0
Mono stay LMs Hlg | o BCD/binary —A8N}Flo |0 Deselector —JpseL}|o | O
Mono sta 5 .
(triggerab)lle) ImMr Hlo |o -% Decode —{peco}|©O | O File read out —LRFIL o
o
-1 % Encode —{ENCO}| O | O File write in —IwriL - 0o
Counter |CTR - | o |0 |0
1R J 7 Segment —{7sEG}-| O | O File information |—{FINF }— @)
- L
.. | Down counter |cTD]—] o lo Individual count | —{BCNT}-| O | O Program entry —{PROG}H|O | O
2 R S
g —+ sin —{ sIN }+ o || & Program end —{PEND}| O | O
8 -1 H §
tuoet | cos —{ cos ° |l g FM call — FM ¢
Up-and-down 4 | =]
counter o |0 g
| | tan —{ TAN }— O (| & |FM start —{FMS } (@)
4+ &
T — sin™! —JASIN} o) FM end —{ FME }+ o)
Ring counter _;_iCTR JI O |0o cos™! —{fAcoS} e} Skip — [SKIP }— 0]
tan™! —{ATAN}- o Skip end SEND}— o
Addition — + Flo|o |5 il i —
- g Transfer —{MOV}] O | O g N skip —{NSKP}— o)
Subtraction - - +|o |o 2 §
o . .. |Block transfer ~L{B8T}+ O |0 /A Jump —JMP}+]0O | O
-2 |Multiplication — x o |o (&
g £ |Digit transfer T o |0 Jump end JEND}-[O | O
§ Division — + oo E & I Tt P — L
B |Division fri?l:;gr’r digit —MOVUI=[O [O | o [Loop —{LooP}— o)
'?:TS) (Rounding) TR0 e Inferior digit g
e transfer &t —{movL}-| O | © |~ Continue —{CONT}— o)
£ (Root —{v O |0
= Pattern clear PC o PUSH PUSH o)
< |Absolute value |—{ aBs }—{O | O Tt + g ~ — =
. Search +{sRCcH}- O E POP —[POP 0
Inversion sign —+ -}-|0O | O g
o]
Switch O S ILEA LEA e}
Increment — +1}+|o | o TLsw - g — s
@ |CHT
Decrement —~ -1 1+l0o |o = —{ CHT O
26

Vol. 32 No. 11986 FUJI ELECTRIC REVIEW

3] FUNCTION

Table 1 shows a list of instruction set for F100 series
and F200 series.

The instructions used in sequence controls as contacts,
relays, counters and timers, and step sequence instruction
describing order control, status transition diagram and
others are expressed in the rudder diagram.

Various arithmetical operations, function computation
and adjustment operation on PID and limiters that are
mainly processed numerically are made out by block dia-
grams and line diagrams. The standard operational precision
is in order of 8 digits BCD code (up to * 79,999,999), and
programming and debugging are easy.

3.1 Rudder diagram

An example of rudder diagram is shown in Fig. 2. This
is programmed by a program loader in a form of diagram
is and stored in the reagion of user’s program in a form of
symbolic expression. Therefore, when the rudder diagram
is saved and loaded, positions of contacts and coils, and
connection relationship can be reproduced perfectly. Also,
in this expression, the rudder line intersections (AND
conections of BO010 amd B0036 of the figure) will be made
possible and the sequence that user wants to express can
freely be made.

The execution of the rudder diagram is processed in
high speed by a bit processor dedicated to process rudder
diagram in a form of symbol.

Fig. 2 An example of rudder diagram expression

B0OO10 MQO005 B0050 B0560
—} { - A |« {
B0O100 ~ M0020
80036 | M0800 ©036
A}
M0020 CTR
b A
B0078.
|
Al

3.2 Block diagram

As one of the methods for expressing the numercial
procesing, F series uses the block diagram method. This
method can be handled with symbolic expression as in
the case of rudder diagram mentioned above. Fig 3 shows
an example of description. In this method, as the principle,
the input is either one or two, while the output is one, and
the contact input used for switch instruction will be set to
the upper part of the block (like M0652 of the figure).

Since the operation output can be directly designated

Softwares for MICRE X-F Series

Fig. 3 An example of block diagram expression

M0653
+ > =F—)

S10329 o—ﬂ %]
460

S10334

$104020
dLmoes2 M0653
=]—-ESW]-—[BDC SW}—0BDG153

$10401 :l(X F——
S10406 ,
BDO1530—

as the input to the subsequent stage, the working memory
need not be designated during the programming. By this, a
program that proceeds along the effective processing flow
can be faithfully expressed and, the processing speed can
also be improved.

3.3 Step sequence

By using the step sequence command, a process advance
type sequence operation can be realized. The step sequence
operation, as shown in Fig. 4 (a), controls the transition
from mth step to the nth step under advance condition, and
expresses the in-step processing with output condition and
output processing. At this time, when the status has transited
from the mth step, to nth step, the output of the mth step
will be reset.

In F series, the above mentioned step sequence insfruc-
tion can be programmed by the image of the rudder dia-
gram, Fig. 4 (b) shows an example of the step sequence.
As shown in the figure, a series of processing will be handled
as one set as a processing unit and step sequences up to 100
sets can be made out in total. Also, among this set, the

Fig. 4 Step sequence processing

(a) Outline of processing

" Advance
condition
Output Quiput
condition processing

(b) Example of description

Set No.
i —Step No.

S01.2 B00O1 'S02.1 501.3
11 e It (
H —1 11 {
503.5
B0002 T110 C)
j L]
1R 1B
‘M0201 B1013

i ¢ >

27

maximum of 100 step process can be controlled. Among
each step, since the different set of the step can be desig-
nated as the next step and advance condition, complex
systems having process branching and process waiting can
efficiently be controlled.

The status of advance of the step is kept even during
the failure of power supply for the system so that, when
the power is restored, the equipment can be operated con-
tinuously. The advance condition of the step can be on-line
displayed by the programming loader. The execution of the
step sequence instructions are processed by bit processor in
high speed.

3.4 Data modules

Both bit/word data of F series is divided into function
units called data modules and managed

The following two can be cited as the features of the
moduling,

(1) Programming that needs not use absolute address

The mehod to access data is not through absolute
address designation as in conventional cases but relative
address designation in the module. Consequently, the pro-
grammer can assign and manage memories easily by being
conscient of module name (or number) even if it is a large-
scale system.

Fig. 5 shows a conceptual diagram of the data module.
(2) Perfectioning of the region over supervision (PAS)

In contrast of the fact that in conventional type of the
region check is of hardware type (that is, depending on the
fact that the memory is mounted or not), in F series, the
region check is effectuated for module unit. Also, index
address (indirect address designation) under program ex-
ecution is checked by module units, so that the data
destruction due to runaway of the application program can
be limited to the minimum.

Fig. 5 Conceptual diagram of data module

28

3.5 Filing instruction

As the installation has come to be higher in function-
ality, not only the calculating function but also functions
for controlling and processing large quantity of data have
come to be necessary.

For this, F series has been improved in filing instruc-
tion as mentioned in the following.
(1) Large filing reagion

F series have a capacity of 4 k words (8 k words, if
combined with that of data region) as filing region. The
region can be defined freely by user as the maximum of
50 units of application file.
(2) Two-dimensional file definition

The standard type of the file for F200 series is two-
dimensional file. File processing is, as shown in Fig. 6,
effectuated by file definition instruction and file read out
(or write in) instruction. The file definition instruction

elaborates two-dimensional files of block size x no. of
blocks by data type designated. Also, the file read out

(write in) instruction designates the address within the file
by the block no. and in-block no. and transfers those cor-
responding to the number of read out words to destination
address (transfer read out data to the file).

(3) FIFO/FILO file processing)

All files can be used not only as table files but also as
FIFO (file in file out) and FILO (file in line out) files. By
this, monitoring on the installation and tracking control can
easily be made. '

An example of use of FIFO file in automobile paint
line is shown in Fig. 7

Fig. 6 File processing

) File def/h/z‘/on S fri

Vol. 32 No. 11986 FUJI ELECTRIC REVIEW

Fig. 7 Example of application of FIFO file

Autormobile paint line

Card reader | |
@' ﬁ %@ De"e%slwwtch \
SSSNRer
<] \ /

FIFO fie

Fife definition instruction
(FILE : 40:2:5:BD]

Fife No.:40
Block fength 2 (model and color)

FIFO store instruction

Card read No. of blocks :5 (5 vehicles)
B10 ‘“—— Mode/.BCD 1 BCD
——(FFST :40: BD10]

FIFO foad /hsz‘rucf/bfl- File No.

Detecting swiich Transtfer end address
B20 (Card reader input)

bl }—({FIFO : 40 : BD20]

-L——-—— File No.

Transfer end address
(Paiting equipment)

Fig. 8 P-link conceptual diagram

P Ink
(b - N - ™~
FPK205 FPK205
1 l T l l '
Loo10 L0G10

——i— ———(

' L i
It

_ - . VAR a - J

3.6 Input/output processing

The input/output region will be refreshed when the
program scanning is over. So that, the execution of process-
ing program and input/output data renewal are always syn-
chronized. By this reason, the users need not worry about
the change in input signals during the scanning of the
program.

AND, in F200 series, a instruction that refreshes only
the designated inputs and outputs (CHT instruction) is
prepared. By this instruction, it was made possible to
control processing of inputs and outputs that require high
speed response such as constant cycle interruption and
process interruption by the application.

Softwares for MICREX-F Series

By using the CHT instruction in the interruption
program, high speed refreshing sychronized to interruption
program can be effectuated.

3.7 P link processing

P link region is assigned to the memory of each capsule
and when a capsule changes data of that region, by the
function of P link interface, the P link region of other
capsule will be changed into the same data. Consequently,
the data assigned to P link, though they are in other capsule,,
can be accessed as if they are in their own capsule. As the
result, reciprocal inter-lock and supervision in processor
systems can easily be attained by the program.

Fig. 8 shows an example. The bit information written
as L0010 in the rudder diagram of one FPK205 can be read
out as L0010 in a rudder diagram of another FPK205.

PROGRAM LOADER

In order to exert fully the features of FPL symbolic
language, two types of program loaders, namely, D10 and
D20 are developed.

D10 handles rudder diagrams and line diagrams while
D20 processes mainly rudder diagram and block diagrams.
Programming is completed by elaborating the rudder
diagram and block diagram on the screen. So that the
debugging can easily be effectuated by the real time data
displayed on the screen.

Also, as the loader interfaces are standardized and
unified from the view point of both hardware and software,
they can be commonly used without having to depend on
the loader type or processor type.

Furthermore, besides the fact that two loaders can be
used simultaneously, this loader is provided with many
features as that it can be connected to either one of P
capsule and T capsule. As for the details of these features,
the readers are requested to refer to the separate article of
this brochure under the tile of “MICREX-F series, Program-
ming Tools”.

(5] SUMMARY

Together with the diffusion of PC’s and expansion of
their field of application, the importance of their program-
ming method and set of instruction will become more
and more important from now on.

The symbolic programming designated by EPL and set
of instructions directly coupled with the applicaton and the
documenting of the programs are thought to be showing
the tendency of future current of PC’s.

Furthermore, the description of system specification,
or programming by description of control method and the
method of elaboration of dialog with PC these we consider
as urgent demand for objects of the next stage development
and we intend to carry on with these developments in
response to the demand of the time.

29

