UDC 681.3.06:[681.323:62-523]

INTERMEDIATE FUNCTIONAL CONTROL
LANGUAGE, FCL

1. FOREWORD

Along with the development of the semiconductor
technology, the ability of programmable controller (PC)
has been enhanced remarkably, and the degree of its popu-
larization has been increased greatly.

Accordingly, multifarious programmable controllers
have been developed for various uses, and a number of
representative forms coexist as program language according
to respective uses or the preference of each user. So far,
Instruction List, Ladder Diagram, Function Block Diagram,
Decision Table and GRAFCET etc. have been used as PC
programming language. This disunited situation of PC
programming language is becoming a serious obstacle to the
development of process control domain.

In addition, these languages depend greatly upon the
hardware of each PC in many cases, thus many programs
having high machine dependency are existing nowadays.

Under such situation, we have developed an inter-
mediate language for PC having the functional structure.
It enables to make standardized PC software independent
of both machine and representative form of program lan-
guage. Thsu FCL improves the portability of PC programs.

This paper introduces the basic concept, the basic
structure of FCL and some examples of its actual applica-
tions.

2. WHAT IS AN INTERMEDIATE FUNCTIONAL
LANGUAGE

2.1 Purpose of development

A number of representation methods such as Mnemonic
description, Ladder diagram, Function Block diagram,
SFC (Sequential Function Chart), Mark Flow Graph and
Decision table have been used as the program representa-
tion of control specification. Each representation method
has merits or demerits in representation ability and being
easy to see, so they should be used selectively according to
the PC application. Generally, a conventional control equip-
ment limits the program representation only to one kind or
a few kinds because of the restriction of hardware. There-
fore, the users cannot select a representatidn method freely,

46

Haruki Tanaka
Yutaka Yoshida
Keiji Ishibashi

and the software which is made up for one certain machine
will not run on the other type of machine.

The Functional Control Language FCL has been
developed to cope with such difficulties and enable to make
the standardized PC software which is independent of both
machine and program representation. This is an interme-
diate language for various program representation to satisfy
the following purposes:

(1) Portability of user software

(2) Isolation of program descriptive representation from
hardware

(3) Encouragement for progress of program descriptive
representation

(4) Encouragement for progress of hardware architecture

(5) High representation ability

(6) Easy conversion from and into graphic representation

(7) Easy execution of intermediate language

2.2 Position of FCL
The Functional Control Language FCL is the interme-
diate language situated between the representation

dependent part and machine dependent part as shown in
Fig. 1.

Fig. 1 Position of functional language FCL

— e e —— e

: I Representation-dependent
‘

SFo®

] Mnemonic Function block ‘(?equential
description Ladder diagram diagram cﬂ:?:‘;on Decision table

lw
(Y R

B S — A P N

I

o -
l Intermediate
L ¥ ¥

Machine-dependent

The program representations such as Ladder diagram,
Function block diagram and SFC diagram are converted
into the standardized intermediate Functional Language, or
the latter is converted into the former vice versa. The
various controllers, machine dependent part, execute the
machine language converted from the intermediate language
or directly the intermediate language, regardless of the
program representative form. Therefore, the representation
dependent part and machine dependent part are isolated
completely from each other, and program having any
representation form can be run on any controller.

In addition, it will be assured that all the programs
produced so far can be run on any new controller which
may be developed in the future, and any program having
newly developed representation form can be run on any
conventional type controller.

Mutual translation is also permitted between program
representations, if they have equivalent representation
ability.

2.3 Basic structure of FCL

The basic form of FCL uses a set of parentheses “()”
as one unit, shown in Fig. 2.

A function and arguments are aligned within “()’ to
form one functional expression. One functional expression
is sure to have one value, thus permitting the functional
expression itself to be described as an argument. The FCL is
a language to describe specifications in combination of such
functions, and it complies with the basic form of the LISP
language. (G.L. Steel Jr. et al., 1984).

The major rules for the basic form are as follows:

(1) A functional expression starts with a function starter

“(” and ends with a function terminator “)”.

(2) The function is placed immediately after the function
starter “(”.
(3) The function is provided with 0 or more argument.

Fig. 2 Basic form of FCL

jl Function for}nl

(function ?a/ue) X

{Functional. terminator
S yChvaduiog ot dbhiiifeda olt]
—~ Function |
Argument[

(4) A constant, veriable or functional expression is permit-
ted as an argument.

(5) The function and argument, or two argument are
separated from each other by a separator “space”.

(6) When a functional expression is executed, one function
value is sent back.
Since a functional expression is allowed as an argument,

functions can be combined together to permit a flexible

representation, as shown in Fig. 3.

2.4 Features of functional representation

The functional representation has the following fea-
tures:
2.4.1 Simple structure

The functional representatio has a simple structure,
that is, function(s) and argument(s) are bracketed with
parentheses. Even a complicated functional description can
be realized by combination of such simple basic structures.
Therefore, the compiler and discompiler of Functional
Language can be easily produced, and executing process of
Functional Language is very simple. Thus, not only inter-

Fig. 4 Representation ability of functional structure

Ladder diagram |

f—n—u -

Intermediate Functional Control Language, FCL

47

preting by software, but also direct execution by LSI can
be realized. -
2.4.2 High representation ability

Functional representation can show the explicit
“relations” among the individual functions, the explicit
“data flow” indicating data flow between functions, and
processing parallelism permitting paralle] processing in the
future. Therefore, the functional representation is suitable
for semantic representation and conceptual representation,
and permits the “high representation ability” and “affinity
with graphic representation” required for intermediate
language.

2.5 Example of correspondence with graphic
representation

An example of correspondence between function
block diagram and ladder diagram and FCL is shown in
Fig. 5.

The important thing is that the graphic representations
and FCL can be converted into each other. As can be seen
from this, translation between graphic representation with
the same representation ability is possible via intermediate
language FCL.

In addition, the SFC which will be adopted as IEC
standard can also be bidirectionally converted with FCL.

3. FCL LANGUAGE SPECIFICATIONS

3.1 Features of FCL
The features of FCL are as follows:

(1) There are a number of available basic functions such as
logic operation, and bit processing suitable for control,
as well as arithmetic floating operation.

(2) State variables can be defined, so not only the combi
national logic, but also sequential logic can be described
easily.

(3) Owing to the structured functions (if-then-else, do-
while etc.), even the program of complicated flow can
be made up visibly in a form easy to.represent
graphically.

(4) Special functions useful in the PC application can be
defined as macro function, and thereby the descriptive
ability can be enhanced.

(5) Real time description such as Task enter and Task
priority definition is permitted.

3.2 Classification of FCL
The language classification of FCL is shown in Fig. 6.

3.3 Types of data handled by FCL
FCL can handle various kinds of data types, as shown
inFig. 7.

3.4 FCL functions
About 120 functions are available with FCL. Typical
functions are listed in Table 1.

48

Fig. 6 Classification of FCL

& F uncz‘ion-deﬁb(fllb(} :

& Program

@ AND, IR, 055’ etes

0+ ><— eto

0> <, eta"‘ :

QBII‘ z‘esl o R
b/f shiff, ete. -

ODafa setfj' : P

& [FTHENELSE, DO»WH/LE, oase. cozva ote

Timer, counter, f/p -flop, - monostable . multivibrator:
filter, d/fferent/az‘/on lntegwt/on dead. band efc

@ Representation form speciﬁcaz‘ion fi

Fig. 7 Types of data handled by FCL

(@) Bit data

D One bit data used in logical Qperaf/bns,,‘efc =

(b) Integer dafa

15 4 [0}
||||t|||||||||||,
N T T T T :
- Signed 16 bit binary. data’ s :
S/gn (negative numbers represented by two s comp/eme t)

(c) Double precision integer data

28 24 20 16
L]|||||||||||1|||
T11|t||1|||\|||1
Sigh Signed 32 bit binary data :
(negative numbers represented-. by z‘wos com /emen }

(d) BCD data

15 12 8 4 (9]
1 T 1T T T 1 T TT
[T{ It l J I -1 | 111 | [- I
Sign BCD 4 dlif data (~ 7999. to 79999) .

(e) Doubte prec/y’on BCD aata . :
24 20 16 . 12 8 a0

31 s - :
LI TIT T 17T T T T 1T 1T 1T i
| | 1) | L1l ' 111 l | l 11l I 1 i1 I L1l l I | [
S/gn Signed BCD 8 bit data (79999999 to 79999999) o
(f) Real data .
8 23 20 16 12 8 4 0
I'_[T l LR R rrrrrrvrririrTrororT TTT T
| T T I NS S N O T O T T e Y s v |
+
S/gn Exponent Meantissa

32 bit IEEE format floating-point data

4. ACTUAL APPLICATION

The controller MICREX-F500 developed at this time
is a kind of high level language machine which can execute
the FCL itself as the machine language. Thus programs of
vérious representations can be available for F500 only by
converting them to FCL.

Vol.34 No.2 1988 FUJI ELECTRIC REVIEW

Table 1 Main functions of FCL (1/2)

Class Name des c:sr%;?ilc))%lseigfnple Remarks
AND (&P,P, ...P,)
OR (>=1P,P, ...P;)
WRITE WP,P, ..P;) P,)—P, .. P,
‘not (NP,) P, : Bit inversion
Set (S P,P,) P, : Input data P, : Coil No.
Sequence) -
Reset (RP,P)) P, : Input data P,: Coil No.
Flip-flop (FFP,P,P,) P,: F/FNo. P;: Setinput P,: Resetinput
Rising edge differential (DP,P,) P,: Inputdata P, : Differential coil No.
Falling edge differential (DNP,P,)
Up counter (CTUP,P,P,P,) P, : Counter No.
Down counter (CTDP,P,P,P;) 11:, : 1Czounttfar plilse input
- : Reset inpu
Connter Ring counter (CTRP,P,P,P,) P: : Setsialv:)
Up and down counter (CTUD B, P, P, P, F,) ll:: g?)lﬁr:ecrolzst.erlgu.lsgpf’cf ‘1 Ig:;er”[‘ﬁ;ut P,: Set value
On-delay timer (TONP,P, P,) P, : Timer No.
Off-delay timer (TOF P,P,P,) P, : Input data
Timer Monostable timer (MON P, P, P,) P,: Setvalue
Retriggerable timer (MOR P,P,P,)
Integrating timer (TMR P, P, P,P,) go "é";njihllo. P, : Input data P,: Reset input
> >P,P)) If (P, : P,) is satisfied, the result is 1 (true). If it is not
> (>=P,P,) satisfied, the result is O (false).
Comparison < (<PoPy)
< (<=P,P))
= (= P,P,)
#* (<>P,P))
AND (AND P, P, ...P,)
OR (ORP,P, .. P,)
EOR (EOR P, P, ...P,)
INV (INVPy) Fo : Is complemenf
Logical Set bit (SBIT P, P,) P, BitNo. P,: Set data
operation
Reset bit (RBIT P, P,) P,: Bit No. P,: Set data
Test bit (TBIT P, P,) P,: Bit No. P,: Tested data
Shift right logical (SRLP,P,) P, : Number of shift bits
Shift Jeft logical (SLLP,P,) P, : Shifted data
Add +P,P, .. Py)
Subtract (= PP, ...P;)
Multiply (% PP, ... Py)
Fixed-point Divide (/ PP, ... P3)
arithmetic Remainder (REM P, P,) P, + P, remainder operation.
Square root (SQRT P,) v P,
Absolute value (ABS P;) | Py |
Sign inversion. (NEG P,) P,: 2’s complement
Add (+F PP, ..P,) (32 bit IEEE format)
Subtract (-FP,P, ...P;)
]) Multiply #FPyP, ...P;)
ﬂﬁﬁiﬁi}‘im Divide (FP,P, ..P,)
Square root (FSQR P,) v P, (32 bit IEEE format)
Absolute value (FABS Py) P, | (32 bit IEEE format)
Sign inversion (FNEG P,) P, (32 bit IEEE format)

Intermediate Functional Control Language, FCL

43

Table 1 Main functions of FCL (2/2)

Class Name S'y n}bd and Remarks
description example
Integer/floating conversion (IFC P,) Fixed-point — floating-point conversion (32 bit IEEE
format)
. Floating/integer conversion (FIC P,) Floating-point — fixed-point conversion (32 bit IEEE
Conversion format)
BCD/BIN conversion (DBC P,) Decimal — binary conversion
BIN/BCD conversion (BDC P,) Binary — decimal conversion
Decode (DECOP,) P,: Input data
Encode (ENCOP,) P,: Input data
Assignment | =P, P, ..P,) (P,)—P, ..P,
:Size P, : Transfer source address,
0 1 >
Block transfer (BT P, P, P;) , - Trasnfer destination address
.. : Input data, P,: Transfer source address.
0 4 1 >
Digit transfer (DT P, B, B, P,) , ¢ Bit size, P,: Transfer destination address
Pattern clear (PCP,P P,) o: Size, P,: Transfer source address, P, : Pattern
Transfer

:Size, P,: Search data, P, : Test source address,

Search (SRCH P, P, P, P;) :: Detection address storage area address
Switch (SW P, P, P,) o Switch input, P,: On data, P,: Off data
Sort (SORT P, P, P.) et adress

Work swap (WSWP P) : Input data

Upper limit (HL P, P,) o: Input data, P,: Upper limit value

Lower limit (LL P, P,) o - Input data, P,: Lower limit value

Upper and lower limits

(HLL P, P, P,)

: Input data, P,: Upper limit value,
: Lower limit value

o

liac] Baciia-d Bech Mach Ra-Biasd Bact Bach Bac R Recliach Hash Baslias A) el Raiias

Program control

Dead band (OB P, P,) , : Input data, P, : Bias value
Analog operation | Bias (DZ P, P,) o . Input data, P, : Bias value
. : Filter No., P,: Enable input, P, : Input data.
] » 1 s L 2]
Filter (F1L P, P, P, P,) 5 Filter time constant
Differential (DIF P, P, P, P;) o Differential/integration No., P,: Enable input,
Integration (INT P, P, P, P,) , - Input data, P;: Time constant
Program start (PGn EXpression. . n: Program No.
expression)
FM start él;l\liigsf;p)ressmn... n: Function module No.
P P, P, ... P, :Input parameters
FM call (FMn P, P, ... P,)

IF statement

(IF condition expression
expression 1
expression 2)

Expression 1: THEN processing, expression 2:
ELSE processing

WHILE statement

(WHLE condition
expression expression)

REPEAT statement

(REPEAT expression con-
dition expression

CONDITION statement

(COND
(condition expression
expression)
(condition expression
expression)

(condition expression
expression)

CASE statement

(CASE (expression)
((expression expression
expression) expression)
((expression expression
...expression) expression)

((expression expression
...eXpression) expression)
(OTHRW expression)

50

Vol.34 No.2 1988 FUJI ELECTRIC REVIEW

Fig. 8 Example of FCL use

By converting FCL to the other machine languages, the
these various programs can be executed by other model of
PCS and by the controllers of other manufacturers.

As an example, software represented by the three kinds
of programming language ladder diagram, function block
diagram, and SFC can be run on both the MICREX-F500

Intermediate Functional Contro! Language, FCL

series and F200 series, which have a different machine
language, as shown in Fig. 8.

5. CONCLUSION

The intermediate functional language FCL enables PC
software to be described in common way independent of
many program representative methods (PC programming
languages) or target PC machines. Therefore, PC software
can be produced in any programming language, and it can
be utilized for any kind of PC machine, even if it is made
by other manufacturer. Thus the portability of PC software
will be improved, and plenty of PC software will be
accumulated as common property, resulting in the progress
of process control domain.

We will continue to make every effort hereafter in
order to refine the FCL further, and to make software
engendering system for FCL more complete and comfort-
able by using AI technology.

51

