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ANALYSIS OF INDUCTION MOTOR DRIVEN BY

RECTANGULAR WAVE CURRENT

[.  INTRODUCTION

In inverters used for induction motors, there are
two types: self commutated inverters with impressed
voltage in a DC link which supply rectangular wave
voltage as the voltage source and those with impres-
sed current which supply rectangular wave current
as the current source.

As is well known, the generated torque in the
motor is pulsated because the current supplied to
the motor into rectangular wave current.

In this article, a three-phase induction motor driven
by a 6-pulse impressed current type inverter will be
treated and comparisons were made with measured
values and computed values refer to torque. In the
analysis of the induction motor, the d-g axis method
generally used in the analysis of synchronous motors
was employed for simplification. The computation
was handled by the modern control theory and the
convenient state transition theory was employed in
numerical value computation using a digital com-
puter.

{l. SELF INVERTER WITH IMPRESSED CURRENT IN
A DC LINK

Fig. I shows the circuit diagram of the self-com-
mutated inverter with impressed current in a DC
link. In this figure, Th~ Ths are the main thyristors,
S;~S, are the turn-off thyristors, and C,~C; are
capacitors for commutation. The reactor L, in the
DC link is to impress the DC current I, and since
the inverter serves as the current source, the reactor
is required in this type of inverter. (An impressed
voltage type inverter can be formed if a capacitor
is inserted in the DC link instead of the reactor
L.

The operation of commutation from R phase to
S phase is explained by reference to Fig. 1. At
that time C, is charged at the polarity shown in the
diagram. Commutation is initiated by the firing of
turn-off thyristor S; and. simultaneous firing of main
thyristor Th,, then the dischage current from C;
flows C,—Th—S, and Th, is turned off in a
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This causes current I, to be commutated
in S; and C, is discharged at a constant current by
1.

At this point Th, has a reverse bias and not be
turned on. The polarity of C; is reversed and is
gradually charged in the reverse polarity. The
reverse bias disappears and Th, is turned on. Then
I, starts to be divided between S, and Th, the
current of S, is reduced and the Th, current in-
creases. Then the total 7, current is transferred to
Th, and commutation is completed.

By repeating such commutation, rectangular wave
current with a conduction of about 120° is supplied
to the load. Fig. 2 shows the waveforms of the
phase voltage, line current and commutating capacitor
voltage when an induction motor is used as the load.
There are cases depending on the application when
the charging circuit is not necessary because of fixed
commutation.
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Fig. 1 Circuit diagram of inverter with

impressed current in DC link

(a) Phase voltage 50V/DIV  (T=200ms)

(b) Line current 20 A/DIV
(¢) Capacitor voltage 400 V/DIV

Fig. 2 Wave forms of current and voltage
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lil. CIRCUIT EQUATION OF INDUCUION MOTOR

Fig. 3 shows the circuit of the inverter-induction
motor (three phase, two pole) system described in
this article. The inverter-induction motor system
circuit shown in Fig. 3 is difficult to analyze as things
stand. Therefore, an equivalent circuit convenient
for analysis is introduced.

First, the 3-phase windings a, b and ¢ converted
to two orthogonal d-¢ windings by means of the
two axis theory (d-g coordinate system)®. The posi-
tions of the d-g axes can be selected optionally but
in this case, the & axis as shown above the stator
windings in Fig. 3 was selected to be delayed 30°
from the a—phase winding. In this case, the trans-
formation matrix [C;] in respect to the stator wind-
ings becomes as follows:

i i1q
lmi V32 } 12
[CJ:\/%iwi 3 { R (1)

e o
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The transformation matrix [C,] in respect to the
rotor windings is a rotating matrix since the wind-

ing rotates in respect to the d—g axes. Then C, is
as eq (2).
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Fig. 3 Inverter-induction motor system
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where

0. =wt+0,0, =0a+"%ﬂ', 0,:0,;—"3*71'
w,=angular velocity

where 0 is the angle between the d axis and the
rotor a-phase winding t=0. This angle corresponds
to the load angle in synchronous motors and is
constant under steady state although it changes in in-
duction motors because of slip.

The currents iy, iy, i, which flow in the stator
windings can be transformed into the d-g axis
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Representation
of induction
motor using d-q
axes

The currents in the rotor can also be divided into
the some components using equation (2).

Fig. 4 shows the induction motor circuit using the
d-q axes. In this case:

3
Ll :/111 +-5 La,l

2
3
L2:la2‘f’"2~— Lo | crreerrmii ( 4)
3
M= M,

where /,, and /[, are the leakage reactances of one
phase component of the stator windings respectively.
L, and L, are the effective reactances and R, and
R, are the resistances of the same component of
the windings. M, is the mutual inductance between
the stator and rotor windings of one phase.

The equations are as following for the circuit in
Fig. 4 when the current and voltage vectors [I] and
[V] respectively are:

[ I] = [ild: ilq; Iag, qu]t

........................... 5

[V]=[7)1d; Uigs 0, 0], ( )
then,

[VT=[Z]X ] ceeevvreeeemneeeeiiieesineea, (6)

where [Z] is the impedance matrix. From the

circuit shown in Fig. 4, the following can be obtain-
ed directly :

1d Iq 2d 2

d R+ L.P  mp | :

1q | R+ L.P MP ’
zl= -

2d| MP | o,M RALP ol

2 —o,M| MP | —wL, Rt L,P

The following is obtained when equation (6) is
divided into the positive phase sequence component
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and the negative phase sequence component by the
method of symmetrical coordinates :

i

jm,.‘ R+LP MP |
R - |
Vi l R,+L,P ] MP
C — L ; |
o e REE
! R — Lr)
0 : Ry Ly x |
hO M(P+jw,) | ~;+]-_wr)‘
T
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3
X F .............................................. ( 7 )
| B |
™
where

7)1f=('vld ’}“jvlq)/N/ 2-, @Ib:(vm —j‘vm)/«/j
ilf:'—'(fm +ji1q) /\/727, ilb:(ild _jilq)/'\/é—
oy = ClaaHJing) [N 2 5 iy = (laa—Jia)IN 2

It is clear from equation (7) that the negative
phase sequence component is the conjugate of the
postive phase sequence component and it is sufficient
to analyze only the positive phase sequence com-
ponent in equation (7).

From the above, the following equation can be ob-
tained for the induction motor circuit as shown in Fig. 4.

‘ MP iy
- ):\ e 7»—3‘~ _—_—— X
0 M(P—jo) | Ri+L(P—jo,) iy
........................... ( 8 )

IV. MEASUREMENTS FROM CORODINATED WHICH
ROTATE WITH COMMUTATION

Fig. 5 shows an ideal waveform of the output cur-

—
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Fig. 5 Waveform of ideal self-commutated
inverter with impressed current in a
DC link
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Fig. 6 Stator current vectors in d-g plane

rent of the self-commutated inverter with impressed
current in a DC link. The resultant vector i, (i,=
{ia+jig} /N 2) of iy, and i, which are the three
phase current with equation (3) becomes transposed
a constant vector and rotates 60° in steps every time
commutation occurs. It has 6 states as are shown
in Fig. 6.

In this case, the concept that the coordinates
rotates 60° in steps in relation to the d-g coordinates
every time commutation occurs is named as the a—p§
coordinates. The relation between the a—/ axes and
the i, vector measured from the d-g coordinates,
is as shown in Fig. 7 with the optional 60° spacing.

The i;; vector and the a-{ axes just prior to
commutation are in the positions i, (mT) and ay— B,
respectively. When commutation occurs, i, first
rotates from the i, (mT) position to the i, (mT,)
position. In this way, i, rotates 60° in respect to
the a—p axes. Then the a—j axes rotate 60° from
ay-fB, to a,—f, and the relation between i;, and
the a—f§ axes returns to its original position just
before commutation. This is repeated every time
commutation occurs and the relation between i, and
the a-f axes can show two states in any 60° spacing.

Now the circuit equation of the induction motor
in respect to the a—p coordinates will be consider-
ed as same as the d-g coordinaties. In respect to
the a-f coordinates, when the current vector [[’]
and the voltage vector [V’] are

[I/]":[iln im; iy, iz,a]t

[V/]z[vln ’UI,?a 03 O]t

and the positive phase sequence component which
is separated by means of the method of symmetrical
coordinates are

1‘1F=(l‘1'+ﬁ1,a)/ﬂ/ 2 Lop = (iza +ﬁ2ﬂ)/‘/ 2

‘Ulp—’:('vm +jvlﬁ)/J 2
The condition in Fig. 8 is obtained from the re-

lation between the i;; vector and the a—f axes in Fig.
7. In Fig. 8, the i, vector is held in the i, (mT)

i {mTa)
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i
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Fig. 7 Relation between stator current
vectors and a-f3 axes
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i1r{(mT)

e (mT+)

60°
Fig. 8 Stator current vectors
8 in a-f plane

condition except during commutation and is shifted
to iz (mT,) only for a short time during commuation.
The relation between iy (mT) and i, (mT,) is a
follows :

iIF (mT_].):ej'PxilF (mT) ........................ (10)

where ¢ =60°

From the above, the circuit equation of the induc-
tion motor in respect to the a-p coordinates becomes
as follows. First, the a—j axes remain stationary
in respect to the d-q axes except during commuta-
tion and the i,, vector is also constant in the i;» (mT)
position. Tnerefore, the impedance matrix [Z’] has
the same relation as [Z] and is follow from equa-
tion (8):

[ Lo
ivm' ’ R, +L,P

MP

e X

0 M(P—jo) RetLP—jo) | i

i
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During commutation, there is a shift from i, (mT)
to iz (mT,) when commutation first begins. There-
fore, i changs from iy (mT) to iy (mT,). At this
time, the a—B coordinates are stationary in respect
to the d—¢ coordinates so that the relation of iy is
obtained by integration by equation (11) from the
time mT just before commutation to the time mT,
just after commutation. The commutation occurs
for only a short time in this integrations. Compar-
ing with differential terms, the other terms are small
and can be neglected. Therefore, from equation

(11);

M i,y (mT,)—iyp (mT)} + Ly {isy (mT,)
— iy (MT)} =0 v (12)

When equation (12) is substitued in equation (10),
the following is obtained :

. (mT+)=JL‘i(1 — &) X isp (mT) Fing(mT) ---(13)

When commutation is completed, the a-8 co-
ordinates are rotated 60° so that i, is shifted to the
Lx(mT',) position rotated 60° from the i(mT,) posi-
tion. This relation can be shown by the following
equation as a projection to the axes rotated 60° as
in the case of i;,. However, at this time, the rota-
tional direction is opposite to that of ijp.
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iy (MT,)=e77" X iyp (mT,)

= Afl‘(e“” —1)x iip(mT) eI Xigp(m T)
2

At the time of commutation, the i vector is-
changed once from i, (mT) to iy (mT,) but in ideal
inverter with impressed current in a DC link, this
commutation time can be neglected. Since the axis
rotation occurs just after commutation, the time for
which the position is i,y (mT,) can also be neglected.
Therefore, the i vector can be considered as con-
stant during commutation. The same concepts can
also be applied for the i, vector. The time in the
position iy (mT,) after the change from iy which
occurs once can be neglected and just after commu-
tation, the change can be considered as directly
from iy (mT) to iy (mT’,). Therefore, at the time
of commutation, the following hold true:

Lp(nT,) =ip(nT)

M .
igp(nT+) :’if(e“jp-_ 1) X ilp(nT) +e—” X izp(nT) J
2

where nT is the time just before commutation and
nT, is the time just after commutation,

V. ANALYSIS BY THE STATE TRANSITION METHOD

Generally when electrical circuit equations were
used, analysis was by means of the Laplace trans-
formation. The circuits equations (11) and (15) can
also be resolved by Laplace transformation. How-
ever, in this case the analysis was performed by the
state transition method using modern control theory.

When the inverter frequency (f=1/6T) and the
angular velocity of the rotor o, are constant, the
following can be obtained from equation (11):

Pl'“—,-=0

Piyp=jo, +<'w~&~>i
op = J Wy L, 1T\ JOr L, oF

In this case, if the state variable X expressed as
X =iy, ], equation (16) can be expressed as fol-
lows :

The relation shown in equation (15) at the time
of commutation can be expressed as follows :
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X(nT,)=B-X(nT)

where B is as follows:

B

i
|
t
i
|
1

(e —=1)x ML, | etiv

In this case, when @(r)=e*, H(t)=®(t)-B, equa-
tions (17) and (18) can be solved as follows: ®

X(t)zH(t——nT)cX(nT) ........................ (19)

From this the value of X (in this case, the i,
i»p value) can be obtained in respect to any point
I time.

The cuurent iy, i in the steady state (n—oo) can
be obtained from equation (19) by making » integers
starting from zero. But in this case, the steady state

value of X(nT) is obtained in this way. When
X (nT) is in the steady state, then:
X4 1T)=X(NT) vvveeeeeminieneeaaeeii, (20)

When culculating the current in the steady state
using the above, the following is employed :

I'gp (nTx) = C()/(l —Do) X ilF
where

@ T vrg—io 1y, M
C b @"—1)+€e"(e 1) L

a=jo,M|L,, b=jw,— Ry/L,, © =60°
From the above, the current at any point in time
can be obtained by substituting the final value of

X (nT) obtained from equation (21) in equation (19):

ip (t)=constant
ip(t):C'i1p+D'i2F (nToc)

where C and D are value when ¢ is used for T at
C, and D,.

When the output torque T is expressed in terms
of [G] ([G] is the coefficient of the angular velocity
in the impedance matrix) the following is obtained® :

T=[1]*-1G]-]

In this case, [I]/* is the conjugate transposed
matrix of [/]. From equation [G] and [I] are as
follows :
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Since the output torque is the sum of the positive
phase sequence component torque and the negative
phase sequence componet torque (since the rotation
of the negative component is the reverse of the
positive component, the negative component is
minus), the following holds true:

T= M (frp g fgada;)-ooereeeememnneeeneeeiniinns (24)

The average torque can be obtained by averaging
the instantaneous torque over a spacing of 60°.

VI. EXPANSION TO OPERATION BY THE SINUSOIDAL
WAVE CURRENT

The sinusoidal wave can be approximated by a
step type waveform with an infinite number of steps.
In this case, the output waveform can be made
sinusoidally by making the number of pulses infinite
in the N pulse inverter. In the 6 pulse inverter,
the current vector are divided into six states with
the phase defference of 60° as shown in Fig. 6 and
it’s direction jumps. In the N pulse inverter, the
jump is 360°/N for each commutation and therefore
the jump for each case of commutation can be
minimized by making N infinite. The current vector
rotates smoothly for one cycle.

In equation (21), if the excreme values of T—0
and ¢—0 are considered under w=¢/T is constant,
this is equivalent to driving the induction motor
with a sinusoidal wave current®, and equation (21)
shows the secondary current at this time. In this
case, ¢ is the angle which the current vector i,
is moved by one case of commutation and 7T is the
time during one commutation. In the six pulse
inverter, ¢ =60° and T=1/6x f (f is the output
frequency).

In equation (22), T and ¢ are sufficiently small
so that e, and e’ can be expanded to obtain the
following approximate equation (refer to addendum 2):

. _‘_kjwMii
S oLy Ry)S

X ilF ........................... (25)

where S=(0—w,)/o. Equation (25) shows the
secondary current when the sinusoidal wave current
with a frequency f(f=w/27) is flowing in the
equivalent circuit of the induction motor shows in
Fig. 9.

The output torque of the induction motor can be
obtained from equation (23) if the primary and
secondary currents are known. Therefore, the out-
put torque when the motor is driven by a sinusoidal
wave current can be calculated by means of the
equivalent circuit as shown in Fig. 9. As an ex-
ample, when the current i flowing in the winding
M in Fig. 9 is kept constant (this is equivalent to
keeping the flux constant), the torque-speed curves
can be obtained.
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Fig. 9 Equivalent circuit of induction motor

When iy is constant, iz and i, are as follows.

Ry/S)* + &*Ly(Ly— M) +jo MR, /S

R (3 3

P _‘CL)QM(LZ—M) +jwMR,[S ;

. o*(Ly— M) +(R,[S)* "
........................... (26)

Therefore, the output torque 7 can be obtained as
follows by substituting in equation (24):

®MR,/S

Tu=2Mx o*(Ly— M?) + (Ry/SY’

X iM‘iM

This gives a curve with the maximum at S=R,/®
(L;—M). The curves for the torque-speed when the
input culrent i is constant can be calculated in
the same way. The output Ty, in this case is as
follows :

This gives a curve with the maximum the value at
S=R,/oL, Fig. 10 shows a typical torque-speed
curve when i, and i are constant. In Fig. 10, the
induction motor is shown to have series character-
istics when the primary current i, is kept constant
but this results in over excitation at a light load
value (S is nealy equal to 0) since the input cur-
rent is constant.

T
Tirm t
™
Tum 1
Tir
S
1 ]
1 St Sig O

Su=Ryjo(Ly—M), Sir=Ry/wL,
M2 . M2 .
TMM:*[]_WX’M"M’ TlFM='"’L';‘ Xiypeir

Fig. 10 Torque speed curve
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VIl. COMPARISON OF CALCULATED AND MEASURED

VALUES

Fig. 11 shows a block diagram of the test device.
A motor with the parameters shown in Table [ was
used for the test. Figs. 12 and 13 show the actually
measured values and the claculated values for the
torque-speed curves. In these figures, the ° X * marks
show the actually measured values and the line curve
shows the caclulated values. The point where the
torque reaches a maximum in the figures is slightly
different in the measured and calculated curves.
This is probably caused by errors in measurements
of constants.

34 ——oi
200V |
50Hz

M DM

Converter
Inverter

Dynamometer

14 50Hz
115V

Fig. 11 Circuit diagram

Table 1 Parameters of motor under tested
Output, No. of poles 0.75kW, 2 poles
No. of phase, rated voltage 4 3-phase 200 V (line to line)
- R, 278Q
o R, 171Q
Li=L, 02143 H
- 77}\} 0.2069 H
T(N-m)

1.0}

X!
X
x
X!
M x|
« x Measured

value
—Computed
value

ws

10 (Hz)

1 - 1 1

0 2 4 6 8

Fig. 12 Torque-speed curve

T(N-m)

F=15 Hz
1d=32 A

Measured
X X yafue

— Computed
Ka/ue .

0 12 13 14 15

(Hz)

Fig. 13 Torque-speed curve
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Fig. 14 Computed curves of instantaneous torque
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! TFOM=TSD/TAV
050 14 TSD=Standard deviation
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: \ F=10(Hz)
\
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\Impressed voltage type
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o ~ Af (Hz2)
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Fig. 15 Comparison of torque pulsation

The torque of an induction motor driven with a
sinusoidal wave current can be obtained from equa-
tion (28). By using this equation, the torque-speed
curve when the r.m.s. value of sinusoidal wave
current is (y 6 /7) x I, (this is the fundamental r.m.s.
value of a rectangular waveform with a conduction
about 120° which has a crest value of I,) can be
obtained. This curve agrees with the calculated
values when the motor is driven by a rectangular
wave current with a crest value of 7,, Because of
this, the average value of the output torque of an
induction motor driven by a rectangular wave current
is almost the same as when the motor is driven by
a sinusoidal wave current with the fundamental r.m.s.
value of the rectangular wave current with a conduc-
tion about 120°. It can also be said that the har-
monic current has no relation to the average torque
and is related only to the pulsated torque.

Fig. 14 shows the calculated values of the in-
stantaneous torque at various slip frecuencies (the
period of this torque is an electrical angle of 60°
in the 3-phase, 6 pulse inverter). The instaneous
torque values do not depend on the supply frequency
when the slip frequencies are the same and are
almost equal.
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Vill. COMPARISON OF PULSATED TORQUES DRIVEN

BY RECTANGULAR WAVE VOLTAGES

In the above case, the amplitude of torque was
calculated for an induction motor driven by a square
wave current. For reference, a comparison was
made with the pulsated torque when the motor is
driven by a 3-phase, six pulse rectangular wave
voltage. Analysis of drive by means of a rectangular
wave voltage has already been described® and will
be omitted here.

When comparing the pulsated torque, various
ideas were used for the coefficient for evaluating
the amplitude. For example, there are methods in
which the r.m.s. value or the actual values of each
harmonic are divided by the mean value. However,
in this case, the standard deviation of the torque
divided by the mean value was used as the evalua-
tion coefficient. This evaluation coefficient has non
dimension and is convenient for comparisons with
various types of motors.

Fig. 15 shows an example of a comparison of the
pulsated torque for the motor shown in Table I.
The evaluation value is almost the same at other
frequencies.

Therefore, it is evident that the pulsated torque
at the same slip frequency is smoewhat large when
the motor is driven by a rectangular wave current.

IX. CONCLUSION

Since the self-commutated inverter with impressed
current in a DC link can perform quadrant opera-
tion in a simple circuit construction and can perform
current control, it has such advantages as safety
against commutation failures and will probably
come into practical use in the future.

The theories described in this article should make
in practical development easier and we are con-
tinuing this reasearch in order to decide on the most
selective and ideal motor constants and control
systems on the basis of the results.

Finally, the authors wish to express their sincere
thanks to the Industrial Science Institute of Tokyo
University, Associate Professor Fumio Harajima and
technical official Takao Koyama for their help and
guidance.
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