# 低価格・高効率を志向した永久磁石形同期機の設計法

奥山 吉彦(おくやま よしひこ)

## 1 まえがき

1960年代以降に出現した希土類永久磁石は,現在もよく 使用されているフェライト磁石に比べ残留磁束密度が1T を超えるなど,磁石特性が格段に優れている。したがって, 回転機の体格を決める一つの要素である磁気装荷を従来機 と同程度に取ることが可能となった。

従来形同期機は一般に回転子に磁極があり,界磁巻線に 直流電流を流して必要磁束を作るので銅損が生じる。一方, 永久磁石形同期機は磁極に永久磁石を使用しているため, 銅損を発生することなく必要磁束が作られるので高効率と なる。この二点が,永久磁石形同期機が注目され比較的大 きな容量まで製品化されだした理由である。

本稿では,永久磁石形同期機の基本的設計法とその最適 化のための考慮点について述べる。

#### 永久磁石形同期機設計の基本

電池と違って,磁石はいくら使っても消耗しない。磁石 が鉄片を吸い付ける現象でいえば,鉄片を吸い付けること により磁石が有するエネルギーは減少するが,その分鉄片 の持つエネルギーが増大する。エネルギーの総和は常に一 定なので,磁石が有するエネルギーの分担が変わるだけで ある。これがいくら使っても消耗しない理由である。

この磁石が作る磁束を利用した回転機が永久磁石形同期機である。

2.1 フェライト磁石と希土類永久磁石の特性比較

希土類磁石は,高性能であるため機器の小形化や省エネ ルギーの目的で採用され,その生産高(質量)は年率 20%で伸長している。希土類磁石では,サマリウム-コ バルト磁石とネオジム-鉄-ボロン磁石が代表的である。

表<sup>1</sup>は,フェライト磁石と対比させて,この2種類の希 土類磁石の特性を示したものである。残留磁束密度,保持

#### 表1 希土類磁石の代表的特性

|                                     |                                       | 磁石種類    | *1<br>フェライト磁石                   | *2          |                | *³<br>ネオジム-鉄-ボロン磁石 |          |
|-------------------------------------|---------------------------------------|---------|---------------------------------|-------------|----------------|--------------------|----------|
| 特性項目                                |                                       |         | (乾式異方性)                         | 特性値         | *4<br>対フェライト磁石 | 特性値                | 対フェライト磁石 |
| 残留磁束密度 B <sub>r</sub> (T)           |                                       |         | 0.2~0.235                       | 1.02 ~ 1.12 | 4.9            | 1.33~1.38          | 6.2      |
| 保持力 H                               | bH <sub>C</sub> *5                    | (kA/m)  | 143~159                         | 716~844     | 5.2            | 836~1,035          | 6.2      |
|                                     | <i>iH</i> <sup>* 6</sup> <sub>C</sub> | (kA/m)  | 239~279                         | 1,432以上     | 5.5以上          | 875以上              | 3.4以上    |
| 最大エネルギー積( <i>BH</i> )max(MGOe)      |                                       |         | 0.9 ~ 1.2                       | 24~30       | 25.7           | 42~46              | 41.9     |
| 温度係数                                | Br                                    | (%/K)   | - 0.18                          | - 0.03      | 0.17           | - 0.10             | 0.56     |
|                                     | iH <sub>c</sub>                       | (%/K)   | 0.22                            | -           | -              | - 0.57             | -        |
| キューリー温度                             | T <sub>C</sub>                        | ( )     | 450                             | 820         | -              | 365                | -        |
| クニック点 <i>iH</i> <sub>K</sub> (kA/m) |                                       | -       | 680~1,300                       | -           | 300~1,000      | -                  |          |
| リコイル比透磁率 μ <sub>r</sub>             |                                       |         | 1.1 ~ 1.2                       | 1.02        | -              | 1.05               | -        |
| 電気比抵抗 (µ・cm)                        |                                       |         | 10 <sup>⁴</sup> 以上 <sup>*</sup> | 84          | 0.0084         | 180~200            | 0.18~0.2 |
| 密度                                  |                                       | (g/cm³) | 4.6 ~ 4.9                       | 8.4         | 1.77           | 7.5                | 1.58     |

\*1:(社)日本電子材料工業会「磁石のはなし」による。

奥山 吉彦

\*2:信越化学工業(株)R26HS(サマリウム系超高保持力グレード)による。 \*6:iH。

\*3:信越化学工業(株)N45(ネオジム系高特性タイプ)による。

\*4:特性中央値の対フェライト比。

\*5: $bH_c$ は,B-H特性上のB=0における磁界の強さ。

\*6:*i*H<sub>c</sub>は,磁化の強さ特性上のB=0における磁界の強さ。 \*7:*i*H<sub>k</sub>は,磁化の強さ特性上のB=0.9B<sub>r</sub>における磁界の強さ。

\*8:住友特殊金属(株)のカタログ「永久磁石」による。



誘導機の電気設計,回転電気機械 の技術開発に従事。現在,(株)富 士電機総合研究所回転機技術開発 研究所主幹技師。

### 図1 希土類磁石の特性



図2 永久磁石形同期機の断面と磁気回路



カおよび最大エネルギー積はフェライトに対し数倍向上し ている。永久磁石は温度が上昇すると減磁する。減磁には, 磁石温度が元に戻ると B-H特性も元に戻る可逆減磁と, 元に戻らない非可逆減磁がある。表1の温度係数は可逆熱 減磁の係数であり,両希土類磁石ともフェライト磁石に比 べ良好な値となっている。

一方,非可逆減磁は磁石温度がある一定温度を超えた場合や,運転点が磁化の強さJの特性(図1)のある磁界の 強さで急激に折れ曲がる点〔クニック(K)点〕を超えた 場合に発生する。磁石は小さな磁石(磁区)の集合体であ り,K点の右側ではこれら磁区が一方向に向いているが, K点を超える外部起磁力が印加されたり過大温度を経験す ると,磁区の一部が逆向きになったり90 5方向が違うもの が生じ,元の特性に戻らなくなる。これが非可逆減磁の物 理的な意味である。表1にはK点を磁界の強さで示して あるが,近年この特性がきわめて良好な希土類磁石が製品 化されている。

希土類磁石を使用するときに考慮しなければならない点 は、フェライト磁石に比べ電気比抵抗が低いことである。 磁石を回転子表面に張り付ける方式(SPM: Surface Permanent Magnet)では、電機子スロットが作る脈動磁束 密度(スロットリプル)により比較的大きな表面損失を発 生するので注意が必要である。 2.2 永久磁石形同期機の設計法

永久磁石形同期機は磁石の種類と寸法から決まる界磁起 磁力一定の同期機となる。この条件を導入すれば,従来形 同期機の設計法が永久磁石形同期機にも適用できる。 2.2.1 磁路の飽和特性 ------ 無負荷電圧の求め方 -----

図 2 は代表的な永久磁石形同期機(SPM)の構成を示 す断面図である。図中の破線は磁路を示している。すなわ ち,N極磁石から出た磁束は空げき を通り,固定子鉄心 を流れ,向きを逆にして空げきを通ってS極磁石へ流れ込 む。回転子継鉄部では,磁束は図示のS極からN極へ流れ 閉回路が形成される。この閉回路にアンペアの周回積分の 法則を適用すると式1が求まる。なお,閉回路の1/2の起 磁力で考える。

$$\frac{B_r}{\mu_r \cdot \mu_0} \cdot h_m = \frac{B_m}{\mu_r \cdot \mu_0} \cdot h_m \cdot k_c + \frac{B_g}{\mu_0} \cdot \cdot k_c + AT_{Fe} (A) ...(1)$$
ここで,
$$B_r : 磁石の残留磁束密度(T)$$

$$B_g : 空げきの磁束密度(T)$$

$$\mu_r : 磁石のリコイル比透磁率(= 1.05)$$

$$\mu_0 : 真空の透磁率(= 4 \cdot 10^{-7})$$

$$h_m : 磁石の厚さ(m)$$

$$k_c : カ-タ係数$$

$$: 空げき長(m)$$

$$AT_{Fe} : 空げきと磁石部を除く磁気回路の所要起磁力$$

$$(A)$$

を示す。

永久磁石形同期機は界磁起磁力が一定であるから,いわ ゆる無負荷飽和特性は存在しないが,無負荷誘導電圧を求 めるための磁路の飽和特性が従来形同期機の無負荷飽和特 性に相当する。この磁路の飽和特性を求めるには,まず各 磁路,例えば歯鉄部や継鉄部などの磁束密度を空げき磁束 密度 *B*g の関数として表す。図2において磁石間の漏れ磁 束は少ないので無視すると,*B*m = *B*g(T)が成立する。

したがって,空げきと磁石の所要起磁力は式2),式3となる。

$$AT_{g} = \frac{B_{g}}{\mu_{0}} \cdot k_{c} \cdot \quad (A) \qquad (2)$$

また,歯鉄部や継鉄部の磁束密度と所要起磁力は以下の 式で表せる。

$$B_{t} = \frac{n}{b_{t}} \cdot B_{g} \quad (T), \quad AT_{t} = H(B_{t}) \cdot h_{t} \quad (A) \dots (4)$$

$$B_{y} = \frac{b_{m}}{2h_{y}} \cdot B_{g} (T) , AT_{y} = H(B_{y}) l_{y} (A) \dots (5)$$
$$l_{y} = \frac{(D_{i} + 2h_{i})}{2} \cdot k_{y} (m)$$

 $B_{\rm t}$ : 歯鉄部磁束密度(T)

# 。:固定子溝ピッチ(m)

*b*t :固定子歯鉄幅(m)

- H(B<sub>t</sub>):固定子鉄心の B<sub>t</sub>に対する磁界の強さ (A/m)
- *h*t: 固定子歯鉄高さ(=溝高さ)(m)
- *B*√:固定子継鉄磁束密度(T)
- *h*<sub>y</sub>:固定子継鉄厚さ(m)
- *b*<sub>m</sub>:磁石幅(m)
- AT<sub>v</sub>:固定子継鉄起磁力(A)
- H(B<sub>y</sub>):固定子継鉄の B<sub>y</sub>に対する磁界の強さ (A/m)
- *ly* : 継鉄磁路長(m)
- *D*<sub>i</sub>:固定子鉄心内径(m)
- *p* : 極対数

ky: : 継鉄磁束の分布を考慮した係数

を示す。

なお回転子継鉄部の所要起磁力に関しては,式5のそれ ぞれの値を回転子に対応させれば同様に求められる。

例えば, Bg を 0.1T ごとに式 2)~(5にて所要起磁力を計 算し,縦軸に空げき磁束密度を,横軸に全所要起磁力をプ ロットすると図3にような磁路の飽和特性が得られる。図 中一点鎖線で示す直線は式1の左辺の磁石起磁力を示す。 したがって,この起磁力と磁路の飽和特性の交点が無負荷 運転時の空げき磁束密度となる。図の例では,Bg = 0.84T である。なお,空げきと磁石の所要起磁力の全所要起磁力 に占める割合が高いので,磁路の飽和特性はほとんど直線 に近い。したがって,概略の空げき磁束密度を求めるには, 次式を用いると便利である。

 $B_{\rm g} \approx \frac{h_{\rm m}}{h_{\rm m} + k_{\rm c}} \cdot B_{\rm r}$  (T).....(6)

一方, B<sub>g</sub>の空間的分布はほぼ方形波であるから基本波磁束密度はフーリエ級数展開により, をポールピッチ(m)とすると次式となる。

 $B_{1} = \frac{4}{2} \cdot B_{g} \cdot \sin(\frac{1}{2} \cdot \frac{b_{m}}{2}) (T) \dots (T)$ 

この磁束密度から毎極の基本波磁束数 1 が求まり,三 相の線間誘導電圧 U は式 8 で表される。

$$U = \sqrt{3} \cdot 1.57 \cdot \frac{N_1 \cdot n_s}{a} \cdot n \cdot l \cdot D_1 \cdot B_g \cdot \sin(\frac{1}{2} \cdot \frac{b_m}{2})$$
  
 $K_{w1} \cdot 10^{-2} (\vee)$ .....(8)  
ここで,  
 $N_1 : 固定子溝数$   
 $n_s : 毎溝導体数$   
 $a : 固定子巻線並列回路数$   
 $n : 回転速度(min^{-1})$   
 $l : 鉄心長$   
 $D_i : 固定子鉄心内径$   
 $K_{w1} : 巻線係数$   
を示す。

# 図3 磁路の飽和特性



2.2.2 負荷時電圧特性

負荷電流が流れると固定子漏れリアクタンスや抵抗によ り電圧降下が生ずるので,端子電圧 Uを発生させるため には内部誘導電圧 E は電圧降下分だけ大きくなければな らない。この電圧 E を発生させるための界磁起磁力 A<sub>R</sub> は 図 3 の無負荷飽和特性から求められ,A<sub>R</sub> の位相は E に対 し 90 9 進む。また負荷電流が流れ,電機子反作用 A<sub>g</sub> によ る電圧降下が生じる。

 $A_{g} = \frac{\sqrt{2}}{2} \cdot A_{1} \cdot \cdot K_{w1} (A) \dots (9)$ 

ここで, $A_1$ は電気装荷(A/m)で, $I_1$ を電機子電流と すると, $A_1 = I_1 \cdot N_1 \cdot n_s/a$ となる。この起磁力 $A_g$ を  $A_R$ にベクトル的に加算すると負荷時に必要な界磁起磁力  $A_2$ が得られる。端子電圧を仮定し $A_2$ が磁石起磁力 $A_m$ に 等しくなるまで反復計算することになる。図4は無負荷飽 和特性上で負荷時端子電圧を図式的に求める方法を示すも のである。

2.2.3 永久磁石形同期機の等価回路

前項では負荷時端子電圧の図式表示について述べた。こ こでは永久磁石形同期機のリアクタンスおよび抵抗を求め, 等価回路を作り負荷時端子電圧を求める方法について述べ る。

(1) 電機子反作用リアクタンス

負荷電流 *I*, が電機子巻線に流れることにより生ずる 1 極あたりの起磁力 *AT*(A)は, *q*を毎極毎相の溝数とすると,

この起磁力によって空げきに生ずる磁束密度 Bは,

$$B = \frac{\mu_0 \cdot AT}{k_c \cdot + h_m / \mu_r}$$
 (T) .....(11)

1 相あたりの直列導体数は *W*<sub>1</sub> = *n*<sub>s</sub> · *q* · 2*p*/2*a*(2*p*: 極数)であるから,鎖交磁束量 は,

したがって,電機子反作用リアクタンス Xa は次式とな

#### 図4 負荷時端子電圧の図式表示



図5 永久磁石形同期機の等価回路



$$X_{a} = 2 f \cdot \mu_{0} \left( \frac{W_{1} \cdot K_{w1}}{p} \right)^{2} \frac{3}{2} \cdot \frac{D_{i} \cdot I}{k_{c} \cdot + h_{m}/\mu_{r}} () ... (13)$$

(2) 等価回路

従来形同期機の等価回路は電機子漏れリアクタンス X<sub>i</sub>, 抵抗 R<sub>a</sub>, 界磁巻線漏れリアクタンス X<sub>f</sub>,抵抗 R<sub>i</sub> および制 動巻線漏れリアクタンス X<sub>k</sub>で示される。一方,永久磁石 形同期機では,磁石表面あるいは保持リング表面の渦電流 回路の電流が基本波電流の値を左右しないので,図5 に示 す単純な回路となる。なお,図中の U<sub>0</sub> は無負荷誘導電圧 を示す。この等価回路を用い力率 cos を考慮した電流を 与えたときの端子電圧を求めれば,図4の図式表示の数値 計算となる。

#### 永久磁石形同期機最適化の設計考慮点

1997年10月24日から施行された米国のエネルギー政策法 には、かご形誘導電動機の効率に高い基準が設けられてい るが、これは地球温暖化を防止すること、すなわち省エネ ルギーを狙いにしたものである。高性能な希土類永久磁石 を採用した低価格で界磁損失のない高効率な永久磁石形同 期電動機は、正にこの主旨に沿った電動機である。希土類 磁石の価格はフェライト磁石に比べ一けた以上高いので、 希土類磁石の使用量を最小にし、しかも機能的にも性能的 にも問題のない設計はいかにあるべきか、主要点につき以 下に述べる。

#### 3.1 IPM の極間漏れによる磁石磁束利用率の低下

小容量永久磁石形同期機は,すでに多数製作され運転されている。この節では,図6(a)の典型的なIPM (Inner Permanent Magnet)方式の極間漏れによる磁束利用率の低 下について述べる。磁石両端では,磁束は磁石外径部の薄 いケイ素鋼板を通って隣接する極性の異なる磁石へ周方向 へ流れ,磁気抵抗の大きい空げきを通って電機子へは流れ にくくなる。すなわち磁束利用率が低下する。薄いケイ素 鋼板の飽和特性を考慮して,空げき磁束密度分布を定量的 に解析する。図6bは各部の磁束密度および寸法を示す図 である。電機子鉄心などの磁路の起磁力は無視できるとす ると,薄いケイ素鋼板部の周方向磁束の起磁力の0から*x* までの積分値は空げき起磁力に等しいので次式が得られる。

$$\int_{0}^{x} H_{x} dx = \frac{B_{g}}{\mu_{0}} \cdot k_{c} \cdot = \frac{B_{r}}{\mu_{r} \cdot \mu_{0}} \cdot h_{m} - \frac{B_{m}}{\mu_{0} \cdot \mu_{r}} \cdot h_{m} \cdot k_{c} (A) \dots (14)$$

$$B_{
m m} dx$$
+( $B_{
m x}$ + $rac{dB_{
m x}}{dx}$ ・ $dx$ ) $h_{
m s}$ = $B_{
m x}h_{
m s}$ + $B_{
m g}dx$ が成立するので,

素鋼板の B - H特性を図 7の破線で近似し,式16で

表
じ
微分方程式を解くと,  $B_x$ ,  $B_g$  は式<sup>17</sup>), 式<sup>18</sup>となる。  $B = \mu_s \cdot \mu_0 \cdot H_x + B_0$ (T)

$$\mu_{s}=5.37$$
,  $\mu_{0}=4$   $\cdot 10^{\cdot 7}$ ,  $B_{0}=1.73$  .....(16)  
 $B_{x}=A^{-x}+B^{--x}+B_{0}$  (T) .....(17)

$${}^{2} = \frac{h_{m} + \mu_{r} \cdot k_{c} \cdot}{\mu_{s} \cdot k_{c} \cdot} (1/m^{2}) \dots (20)$$

境界条件から係数 A, Bを求め近似を用いると, B<sub>g</sub>は 式21となる。

式<sup>21</sup>の磁束密度分布の基本波波高値をフーリエ級数展開 して求める。ただし<sup>2</sup>=( / )・<sup>2</sup>に換算する。

$$B_{1} \approx \frac{4}{2} \left\{ \sin \frac{1}{2} \cdot \frac{b_{m}}{2} - \frac{1}{2} \cdot \frac{1}{2} \left( -\frac{1}{2} \cos \frac{1}{2} \cdot \frac{b_{m}}{2} + \sin \frac{1}{2} \cdot \frac{b_{m}}{2} \right) \right\}$$

$$\frac{B_{r}}{\mu_{s} \cdot k_{s} \cdot \frac{1}{2} \cdot h_{s}} \qquad (22)$$

極間の漏れがないときの方形波の基本波波高値 *B*<sub>1</sub>, は 式 6), 式 7 から次式となる。

$$B_{1} \doteq \frac{4}{2} \cdot B_{g} \cdot \sin \frac{1}{2} \cdot \frac{b_{m}}{2} \approx \frac{4}{2} \cdot \frac{h_{m}}{h_{m} + \mu_{r} \cdot k_{c}} \cdot B_{r} \cdot \sin \frac{1}{2} \cdot \frac{b_{m}}{2} \dots (23)$$

磁石磁束利用率を B<sub>1</sub>/B<sub>1</sub> '= と定義すると,式<sup>22</sup>),式 (<sup>23</sup>から は式<sup>24</sup>で与えられる。

$$=1 - \frac{1}{a^{2}+1} (- i \cot \frac{1}{2} \cdot \frac{b_{m}}{2} + 1) \dots (24)$$

55 kW,1,800 min<sup>-1</sup>,6 極機の永久磁石同期電動機の磁 束利用率について具体的に検討した。この電動機の基本波 磁束密度 *B*<sub>1</sub> は約 1T,*b*<sub>m</sub>/ は0.85 の IPM 方式[図6(a)] である。*B*<sub>1</sub> = 1T としたときの接着剤方式 SPM(接着剤 厚さ極小),バインド方式 SPM(ガラスバインドなど)お よび当該機方式(IPM)の3方式の*b*<sub>m</sub>/ と磁石使用量の 関係を求めた。図8は当該機の磁石使用量を1として,3

#### 図 6 IPM 方式永久磁石形同期機



図7 ケイ素鋼板の B-H 特性



方式の磁石使用量を単位法で示したものである。この図か ら接着剤 SPM 方式では極間漏れがなく,永久磁石形同期 機として理想的方式である。最適な厚さのバインドテープ があるものとして算出したバインド方式 SPM の使用量が 接着剤 SPM より大きい理由は,バインドの厚さだけ空げ き長が大きくなるからである。式21)~(24を用いて算出した IPM 方式の磁石使用量が接着剤方式 SPM のそれより大き い理由が極間漏れである。また  $b_m / \leq 0.8$  で使用量が SPM バインド方式より増加するのは,機械強度的に  $h_s$  が 大きくなり,極間漏れが増加するためである。希土類磁石 は高価なので,極間部に空げき層を設けた磁束利用率向上 策〔図 6(2)の破線〕などが採用される。

SPM の場合の磁石使用量 *W*は, mを磁石の比重, 2*p* を極数とすると次式で示される。

したがって, Wが最小となる (*b*<sub>m</sub>/ )<sub>min</sub> は *B*<sub>1</sub>/*B*<sub>r</sub> に依存し, *B*<sub>1</sub>/*B*<sub>r</sub> が小さくなると (*b*<sub>m</sub>/ )<sub>min</sub> は小さく, *B*<sub>1</sub>/*B*<sub>r</sub>

図8 磁石使用量と bm/の関係



図9 短絡電流の起磁力



が大きくなると,( $b_m$ /)min は大きくなる。 $B_1/B_r \approx 1$ を採用すると,図8のように( $b_m$ /)min  $\approx 0.9$ となる。

磁石厚は使用量だけではなく,3.2節の短絡電流による 磁石の永久減磁にも関係するので,両者を勘案して決める 必要がある。

#### 3.2 短絡電流による磁石の永久減磁

永久磁石形同期機の端子部で短絡が発生すると短絡電流 が流れる。この短絡電流による起磁力(AT<sub>a</sub>)は図9に示 すように磁石の起磁力(AT<sub>m</sub>)と逆向きの起磁力となる。 図には磁石の起磁力を方形波で,短絡電流による逆向きの 起磁力を正弦波で示し,破線はAT<sub>m</sub> - AT<sub>a</sub>を示す。この 状態における磁石の磁束密度 B<sub>m</sub> および磁界の強さ H<sub>m</sub> は 式<sup>26</sup>になる。

$$\frac{B_{\rm m}}{\mu_{\rm r}\cdot\mu_0}\cdot h_{\rm m}\cdot k_{\rm c} = H_{\rm m}\cdot h_{\rm m} = \frac{B_{\rm r}}{\mu_{\rm r}\ \mu_0}\cdot h_{\rm m} - \frac{B_{\rm g}}{\mu_0}\cdot \cdot k_{\rm c} - AT_{\rm Fe} - AT_{\rm a} \dots (26)$$

ここで, AT<sub>a</sub> は短絡電流による起磁力を示し,正弦波分 布の波高値を表す。この点 P<sub>m</sub>(B<sub>m</sub>, H<sub>m</sub>)を磁石の B-H特性にプロットして図 10 に示す。図において H<sub>a</sub> = AT<sub>a</sub>/h<sub>m</sub>, P<sub>o</sub> は電動機磁気回路のパーミアンス係数である。 この点 P<sub>m</sub> が K 点を超え P<sub>m</sub>'になる H<sub>a</sub> / h<sub>m</sub> が印加される と,短絡電流が消滅しても元の無負荷運転点 P<sub>0</sub> に戻らず P<sub>0</sub>'になる。この現象を磁石の永久減磁という。短絡電流 は交流対称分と直流分からなり,直流分は時間とともに減 衰するので,この減衰も考慮して永久減磁を検討する必要 がある。なお IPM 方式の場合,磁石両端外径側の薄いケ

#### 図10 短絡時の動作点



図 11 スロットリプルの大きさ



イ素鋼板部は周方向には磁気的に飽和しているので減磁に 対する効果はないが,極中心のケイ素鋼板部で磁束密度の 緩和が生じるので SPM 方式より多少有利となる。

3.3 SPM 方式の回転子表面損

SPM 方式の場合,永久磁石として希土類磁石の固有抵 抗がフェライト磁石に比較し非常に小さいので,磁石表面 は固定子スロットによるスロットリプルと鎖交し,渦電流 が流れ損失が発生する。非磁性導電性金属の磁石保持リン グを装備する高速永久磁石形同期機の場合には,この損失 は保持リングに発生する。磁石はある一定温度を超えると 永久減磁を生じるので,特に磁石や磁石近傍に発生する損 失と磁石温度の精度よい定量化は必要不可欠である。

さて,磁石または保持リング表面におけるスロットリプ ル $B_{\text{stat}}$ (T)は $b_N$ をスロット幅,yを電機子鉄心表面か ら磁石(または金属保持リング)表面までの距離とすると 空げき磁束密度 $B_{\text{g}}$ に対する割合 $B_{\text{stat}}/B_{\text{g}}$ は,図11で与え られる。

N₁を固定子スロット数, nを回転速度(s<sup>-1</sup>)とすると,

図 12 R<sub>e</sub>()(ネオジム - 鉄 - ボロン磁石の場合)



回転する磁石表面あるいは保持リング表面は周波数  $f = N_1 \times n(Hz)$ で、この磁束と鎖交するので表面には渦電流が流れる。この渦電流は  $B_{\text{stat}}$ を減じるように作用するが、この影響は小さいので無視しても損失値に大きな違いは生じない。

を磁石または保持リングの導電率,µ1を磁石または 保持リングの比透磁率, Nをスロットピッチ(m), = 2 fとすると,単位表面積あたりの損失 Pは式27 ℃示される。

ネオジム - 鉄 - ボロン磁石の ≈ 0.5 ・ 10<sup>6</sup> (S/m)で あるから, *R*<sub>e</sub>()は図12となる。

#### 4 あとがき

永久磁石形同期機の基本的設計法と,経済的にも性能的 にも最適な永久磁石形同期機とするための考慮点について 理論的に述べた。本稿が設計技術者に多少でも参考になれ ば幸いである。

本稿をまとめるにあたり,多大なご指導をいただいた関 東学院大学森安正司教授に深く感謝の意を表する次第であ る。

参考文献

- (1) 森安正司:希土類磁石の特性,電気評論, No.4 (1998)
- (2)奥山吉彦・森安正司:永久磁石形同期機の設計法,電気学 会回転機研究会資料,RM-97-25(1997)
- (3)小貫天ほか:電機設計法への最適化数値計算の導入,電気学会回転機研究会資料,RM-98-132(1998)
- (4) Hausberg, V.; Moriyasu, S.: Tooth-Ripple Losses in Highspeed Permanent Magnet Synchronous Machines, 電気 学会論文誌 D, No.11 (1998)



\*本誌に記載されている会社名および製品名は、それぞれの会社が所有する 商標または登録商標である場合があります。