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1.	 Introduction

Against a backdrop of healthy domestic and foreign 
demand, the steel industry is continuing its fundamen-
tal trend of increasing production for the manufactur-
ing industry.  Meanwhile, since the steel industry 
accounts for approximately 11% of final energy con-
sumption in Japan, efforts to improve the efficiency 
of energy usage have been pursued actively for a long 
time.  Since the first oil crisis, an energy savings of ap-
proximately 20% has been realized, and efforts to con-
serve energy have intensified with the recent recogni-
tion of the importance of preventing climate change on 
a global scale.  Reducing the consumption of energy in 
manufacturing processes is a part of these efforts, and 
it is a goal to reduce energy consumption in fiscal 2010 
to a level that is 10% lower than the energy consump-
tion in fiscal 1990.

Fuji Electric was early to recognize the usefulness 
of energy management in steelworks, and continues to 
deliver “energy centers” which have become synony-
mous with energy management systems.  The energy 
supply and demand configurations for steelworks are 
various, and have mutually complex relationships.  A 
process computer-based real-time energy supply and 
demand forecast function and an optimal distribution 
function are essential parts of an energy center in or-
der to supply energy stably and respond rapidly to the 
moment-by-moment changes in the energy supply and 
demand balance.

Based on these circumstances, this paper describes 
the application of Fuji Electric’s FeTOP optimal energy 
operation system package to an energy plan in a steel-
works (in cooperation with the JFE Steel Corporation) 
and the results of optimal operation that have been 
verified through simulations.

2.	 Optimal Operation of an Energy Plant

An energy plant supplies various forms of energy, 
such as electricity, heat and steam, to facilities in facto-
ries, business offices, hospitals, large buildings and the 
like.  To supply the energy, various types of equipment 
are used, including electric generators, boilers and en-

ergy source facilities.  To meet the demand for energy 
required at a facility, the energy – including electric 
power, gas and the like purchased externally – must be 
distributed and supplied to each piece of equipment. 

In particular, an energy plant in a steelworks 
can be utilized efficiently to realize energy savings by 
converting gas and heat by-products generated from 
production facilities into a form suitable for energy 
use.  The conversion of energy must be implemented 
while carefully monitoring the balance between sup-
ply and demand, and with the appropriate combina-
tion and distribution, i.e., such that optimal operation 
enables a reduction in the externally purchasing cost 
and a lower burden on the environment.  However, 
with a boiler and other such equipment, in addition to 
fuel that is externally purchased, multiple by-product 
gases are also used simultaneously as fuel, and various 
constraints exist for the allocated proportions of these 
gas by-products.  An energy plant in a steelworks must 
operate in consideration of constraints that are more 
numerous and more complex than in energy plants of 
other industries.

Moreover, energy supply and demand are con-
stantly changing, and for equipment such as a holder 
that stores by-product gases, the optimal operation in 
response to supply and demand fluctuations within 
a fixed interval must be determined.  Accordingly, as 
shown in Fig. 1, the optimal operation of an energy 
plant is realized through the use of a supply/demand 
forecast function, an optimal operation planning func-
tion and a plant simulator.  In other words, the sup-
ply/demand forecast function predicts the fluctuations 
in the supply and demand of various types of energy, 

Fig.1	 Functions for realizing optimal operation of an energy 
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including the quantity of generated by-product gases.  
Next, the optimal operation planning function uses 
the plant simulator to determine optimal operation 
that satisfies the forecasted energy supply and demand 
requirements in consideration of many various con-
straints.

3.	 FeTOP Optimal Energy Operation System 
Package

An overview of the main functions and a descrip-
tion of the elemental technology of FeTOP is presented 
below.

3.1	 Forecasting function
The demand for energy, i.e., electricity and heat, 

and the amount of generated by-product gases have 
various characteristics which differ when affected 
by diverse conditions, i.e., factory operation and the 
weather, but also sometimes periodically exhibit the 
same trends.  The following models are used mostly to 
simulate these characteristics.

(a)	 Physical model that uses physical characteristic 
equations for the energy consumption of equip-
ment

(b)	 Statistical model that uses historical perfor-
mance data

(c)	 Hybrid model that combines the physical model 
and statistical model

These models may be described in some cases with 
linear equations, but must be described with non-lin-
ear equations in other cases, and various forecasting 
methods should be considered in order to make fore-
casts with good accuracy.

FeTOP allows the use of multiple forecasting meth-
ods, such as a pattern forecasting method, a multiple 
regression method and a neural network method.

(a)	 The pattern forecasting method produces a fore-
cast value by searching historical performance 
data for the closest fit to the present condition.

(b)	 The multiple regression method uses a linear 
equation to approximate the relationship be-
tween explanatory variables for heat, humidity 
and so on, and objective variables such as for the 
power demand to be forecast.

(c)	 The neural network method structures a non-
linear forecasting model based on learned his-
torical data to produce results most suitable to 
the present condition.

Of these methods, the analyzable structure neural 
network (ASNN) developed independently by Fuji Elec-
tric enables the forecasting reasons to be explained, 
which had been difficult to do with prior neural net-
works having a “black box” interior.  As shown in Fig. 
2, the network interior is structured for each input unit 
so that the forecasting reason can be explained, and 
the structure can be optimized since units and connect-
ing weights that are not needed in the learning process 

may be eliminated.

3.2	 Plant simulator
The plant simulator supports modeling of the 

plant characteristics using multiple methods, such 
as modeling with linear or non-linear characteristic 
equations based on physical models of the equipment 
and modeling using response surface methodology and 
neural networks.  Moreover, plant characteristics may 
be modeled using various expressions such as logical 
equations for local control, such as quantity control, 
and plant-specific operating rules.  Additionally, the 
plant simulator also supports modeling of the vari-
ous constraints and objective functions needed when 
searching for optimal operation. 

The plant model may be generated graphically on 
a monitor screen.  Standard models for many types of 
equipment, such as boilers and turbines, have already 
been developed and are available for use as templates.  
A model for an entire plant can be generated by posi-
tioning and connecting these templates on a monitor 
screen.  Parameters for the model characteristics and 
constraints can also be designed on-screen.  Additional-
ly, an objective function can be modeled and optimized 
on-screen by connecting the terminals of variables in 
the model.  Figure 3 shows an example of the creation 
of a plant model.

Moreover, in addition to the case where used with 
an online optimal operation system, this simulator may 
also be used in offline simulations such as for engineer-
ing an optimal operation system or for reviewing an as-
pect of the plant design, such as equipment selection.  
As a result, the user is free to set which plant variables 
are input as independent variables, which variables 
are dependent variables (variables computed by com-
puting the modeling equations), and which variables 
are the state variables to be determined according 
to the optimization.  These settings, once configured, 
may be changed by simple onscreen operations.  Based 
upon category setting information for these variables 
and upon equipment model connection information, a 
model computation algorithm is configured automati-
cally inside the simulator.

Fig.2	 Overview of structured neural network
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3.3	 Offline simulation function
The FeTOP optimal operation planning function 

is realized using the above-described plant simulator.  
Accordingly, constraints and objective functions can 
be configured easily on the plant simulator screen, and 
the designation of which plant variables are to be set 
as state variables can also be implemented easily.  As 
a result, in addition to performing online optimization 
simulations, offline optimization simulations can also 
be implemented using user-configured operating set-
tings without having to perform various optimization 
calculations and optimization for various scenarios.

For example, simulations can be implemented for 
various study purposes, such as to compare optimal 
operation plans in order to minimize cost or minimize 
CO2 emissions and to estimate the amount of by-prod-
uct gas generation required for a certain operating 
state.

Furthermore, since the input conditions for mul-
tiple cases and the calculated results thereof can be 
saved collectively and reused, this function enables 
plans for improvement to be reviewed through the 
pre-assessment of operation plans and the verification 
of historical operation results, energy plant optimal 
operation plans to be drafted and the effects thereof 
to be verified, and plant design, including equipment 
selection, to be reviewed.

3.4	 Optimal operation planning function
In order to realize optimal energy plant operation, 

the start-up and shutdown status (discrete values) and 
the power output (continuous values) of equipment 
such as generators must be determined simultaneous-
ly.  Mixed-integer linear problems (MILP) that approx-
imate device characteristics and operation conditions 
with a linear function have been formulated and solved 
previously.  But, when applied to an actual plant, in 
addition to the non-linear characteristics of devices, 
logic equations for quantity control and other control 

logic and operational rules must also be considered.  
These considerations, in order to be handled directly, 
must be formulated as a non-linear mixed-integer 
problem and solved.  An effective method for solving 
mixed-integer non-linear problems did not exist previ-
ously, but the use of a recent method known as meta-
heuristics enables such problems to be solved.  FeTOP 
implements an optimization function that uses PSO 
(particle swarm optimization), one such meta-heuristic 
technique(1).

PSO is a multi-point solution search technique that 
models the movement of a group of animals or other 
swarms to solve optimization problems.  As shown in 
Fig. 4, an optimal solution is obtained by allocating 
multiple search points to a search space, sharing infor-
mation of favorably evaluated search points, and based 
on that information, by repeating the migration of the 
search points.  In recent years, various techniques for 
improvement have been proposed, and FeTOP allows 
the use of multiple improvement techniques.

Fuji Electric has delivered an optimal operation 
system using PSO to the energy plant for a mechani-
cal part manufacturing factory, and this system has 

Fig.3	 Example of creation of plant model with plant simulator
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successfully contributed to achieving energy savings 
and reducing CO2 emissions.  However, generally 
in an energy plant in a steelworks, the amount used 
of each by-product gas is set as a state variable, the 
mutual interference among state variables is strong 
and the proportional allocation relationships thereof 
have many constraints, thus increasing the difficulty of 
finding a solution as an optimization problem.  On the 
other hand, with FeTOP, the PSO search algorithm is 
simple, and with the characteristic feature of allowing 
the easy addition of proprietary improvements dur-
ing searching, the configuration allows improvements 
unique to the target plant to be added.

In the optimal operation of an energy plant in a 
steelworks, for example, an enormous number of con-
straints must be considered, and these constraints 
are usually considered using the penalty function 
method. In other words, by adding, as a penalty term, 
the weighted sum of constraint violation values to an 
object function, a solution that satisfies the constraints 
can be obtained.  In some cases, however, the addition 
of a penalty term causes a phenomenon whereby the 
search efficiency drops significantly.  Therefore, this 
function is configured such that among the proprietary 

processes added during a search, and improvement 
process can be added for solution that eliminates 
specific constraint violations.  For example, by imple-
menting an improvement process so as to correct a 
conflicting operation solution, such as when gas is be-
ing purchased despite the holder capacity being at its 
maximum capacity and diffusing gas, the efficiency 
of solution searching can be improved.  Additionally, 
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when adding a penalty term, the weighting factor usu-
ally must be adjusted, but a function has also been 
added for automatically changing the weighing factor 
value according to the objective function value or the 
like while searching.  As a result of these improve-
ments, better searching efficiency is obtained.

4.	 Implemented Example

An example is presented below of an offline simula-
tion modeling an energy plant in a steelworks.

We evaluated the optimization of the supply of 
energy sources such as gas and heat from an iron and 
steel making plant and the distribution of energy ac-
cording to the demand for energy (electricity, gas, heat) 
required in manufacturing processes and downstream 
processes in order to minimize operating costs such 
the purchasing cost of heavy oil and to minimize CO2 
emissions.  For the model plant shown in Fig. 5, the 
evaluation was implemented by comparing evaluation 
values, for the case where optimization was performed 
by simulating plant operation using performance data 
for energy demand and supply during unusual operat-
ing conditions, with evaluation values computed based 
on the actual operating state.  From the simulation re-
sults of a number of cases that modeled several unusu-
al operating conditions, we verified that optimization 

has the effect of reducing operating costs by of approxi-
mately 1 to 3% on average and reducing CO2 emis-
sions by approximately 72,000 t-CO2 annually.  Figure 
6 shows the effect of reducing heavy oil consumption 
as an example of the result of minimizing operational 
cost, and Fig. 7 shows the effect of reducing CO2 emis-
sions as the result of minimizing CO2 emissions.

5.	 Postscript

We have presented the verified results of optimal 
operation systems for energy plants, as represented by 
the iron and steel industry. 

Leveraging these results, Fuji Electric intends to 
develop these systems further in order to satisfy user 
needs, and will continue to work to realize efficient and 
optimal energy operation and to help prevent climate 
change on a global scale.

Lastly, the authors wish to extend their deep grati-
tude to the JFE Steel Corporation for their tremendous 
cooperation and advice in verifying the efficiency of op-
timal operation of an energy plant in a steelworks.
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