第2世代 SiC-SBD 1,200 V シリーズ

2nd-Generation Discrete SiC-SBD 1,200 V Series

原 幸仁 * HARA, Yukihito

宫本 辰^{*} MIYAMOTO, Shin

中村 友士 * NAKAMURA, Yuji

近年、全世界のデータ通信量の増加に伴い、データセンターや通信基地局の設置が加速している。データセンターには電力の安定供給が求められるため、無停電電源装置(UPS: Uninterruptible Power System)が使用される。UPSに適用されるパワー半導体に対しては、さらなる低損失化と耐久性の向上が要求されている。

富士電機は、第 1 世代ディスクリート SiC-SBD シリーズに比べ、順方向電圧 $V_{\rm F}$ の低減により低損失化と、サージ順電流 $I_{\rm FSM}$ の向上を実現した第 2 世代ディスクリート SiC-SBD 1,200 V シリーズを開発した。

図 1 パッケージ外観

1 特徴

第2世代ディスクリート SiC-SBD 1,200 V シリーズ のパッケージ外観を図1に、ラインアップを表1に示す。 主な特徴は次のとおりである。

- (a) 低順電圧(T_{vj} =25 $^{\circ}$ C、従来比 10% 低減)の実現により、適用する電源機器の効率向上に貢献
- (b) I_{FSM} (サージ順電流)の改善 (T_{vj} =25 $^{\circ}$ C、従来比 110%向上)により、瞬間的に流れる順方向の大電流 (突入電流)に対する耐量が向上

2 チップ技術

SiC-SBD は、ユニポーラデバイスであり、伝導に寄与するのは蓄積効果のない多数キャリアであることから、逆回復動作時のスイッチング損失は小さい。したがってデバイス損失の低減には、 V_F の低減による導通損失の低減が必要である。また、力率改善(PFC: Power Factor Correction)回路では、電源の投入時に平滑コンデンサを充電するため、突入電流によってダイオードが破壊しないことが求められる。

図2に、第1世代と第2世代のSiC-SBDチップ構造を示す。いずれも素子表面にp+層を形成したJBS (Junction Barrier Schottky)構造である。第2世代SiC-SBDでは、n*SiC基板厚さの薄化、ショットキー接合の最適化によるバリアハイトの低減、JBS構造とドリフト層の最適化によるドリフト抵抗の低減、独自のウェーハプロセス技術によるコンタクト抵抗の低減などにより、

= 1	二 ノヽノフ・・・・ 一º
Æ I	ラインアップ

型式	パッケージ	最大定格			電気特性	
		$V_{\sf RRM}$	I _F	I _{FSM}	<i>V</i> _F <i>T</i> _{vj} =25 ℃ (typ.)	V _F 7 _{vj} =150 ℃ (typ.)
		(V)	(A)	(A)	(V)	(V)
FDC2WT20S120	TO-247-2	1,200	20	190	1.57	2.29
FDC2WT40S120	TO-247-2	1,200	20	305	1.57	2.29

- * 富士電機株式会社半導体事業本部電装事業部電装設計第二部
- * 富士電機株式会社半導体事業本部産業事業部産業設計第一部
- ** 富士電機株式会社半導体事業本部電装事業部電装設計第一部

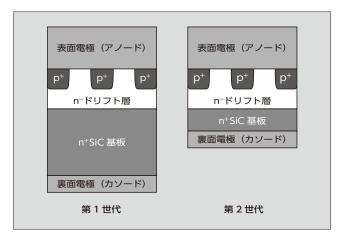


図 2 第 1 世代と第 2 世代の SiC-SBD チップ構造

 $V_{\scriptscriptstyle extsf{F}}$ の低減と、 $I_{\scriptscriptstyle extsf{FSM}}$ の改善を行った。

図3に、第1世代と第2世代1,200V/20A定格の $I_F=20$ Aにおける V_F の温度特性を示す。-55 $^{\circ}$ C +125 $^{\circ}$ Cまでの領域において、第2世代は第1世代より V_F が低く、 $I_{vi}=25$ $^{\circ}$ Cにおいて I_{vi} は10%低減した。

図4に、1,200 V/20 A 素子の大電流域の I_F - V_F 特性を示す。表面電極(アノード)と接している p^+ 層と n^- ドリフト層で構成される pn 接合ダイオードが動作し、表面

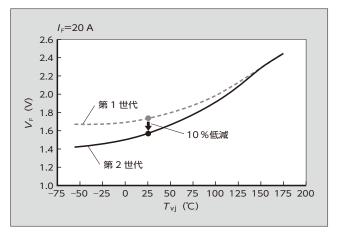


図 3 1,200 V/20 A 素子の第 1 世代と第 2 世代の V_E 温度特性

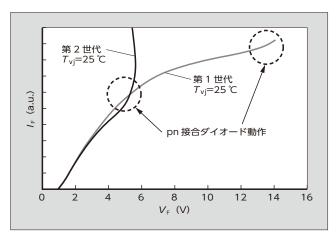


図 4 1,200 V/20 A 素子の第 1 世代と第 2 世代の大電流域の $I_{\rm F}$ - $V_{\rm F}$ 特性



図 5 1,200 V/20 A 素子の第 1 世代と第 2 世代の I_{FSM} 特性

電極(アノード)と p^+ 層のオーミック領域に $100 \, A \, \text{以}$ 上の大電流が流れる。第 $2 \, \text{世代は、JBS}$ 構造を最適化したことにより第 $1 \, \text{世代と比べて pn}$ 接合ダイオードに電流が流れやすくなる。また、 $n^+ \text{SiC}$ 基板の薄化による熱抵抗が低減(放熱性向上)したことにより、図 $5 \, \text{に示すように}$ 、第 $1 \, \text{世代では} \, I_{\text{FSM}}$ 保証値は $90 \, \text{A}$ であったのに対し、第 $2 \, \text{世代では } 190 \, \text{A}$ となり、約 $2 \, \text{倍向上した}$ 。

3 パッケージ

外形は業界標準の TO-247 パッケージで、センター端子がない 2 端子の TO-247-2 パッケージを採用した。端子間の沿面距離(絶縁距離)が 3 端子品より長くなるため、絶縁性が高くなり、高耐圧に向いた構造である。また、チップとリードフレームの接続には鉛フリーはんだを採用しており、RoHS 指令(EU 2011/65/EC)に適合している。

参考文献

(1) 渡邉壮太ほか. 第2世代ディスクリートSiC-SBDシリーズ. 富士電機技報. 2021, vol.94, no.4, p.267-271.

発売時期

2021年12月

お問い合わせ先

富士電機株式会社 半導体事業本部営業統括部営業第一部 電話(03)5435-7152

(2023年1月19日Web公開)

*本誌に記載されている会社名および製品名は、それぞれの会社が所有する 商標または登録商標である場合があります。